

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Quality Engineering Service of the Chippewa Valley, Inc.

345 Frenette Drive, Suite 1 Chippewa Falls, WI 54729

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the fields of

TESTING, DIMENSIONAL MEASUREMENT and CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at www.anab.org.

Jason Stine, Vice President

Expiry Date: 22 September 2026 Certificate Number: ACT-1189

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017 AND ANSI/NCSL Z540-1-1994 (R2002)

Quality Engineering Service of the Chippewa Valley, Inc.

345 Frenette Drive, Suite 1 Chippewa Falls, WI 54729 Timothy A. Tozer 715-861-7723

TESTING, DIMENSIONAL MEASUREMENT AND CALIBRATION

Valid to: September 22, 2026 Certificate Number: ACT-1189

TESTING

Mechanical

Version 011 Issued: September 18, 2024

Specific Tests and/or Properties Measured	Specification, Standard, Method, or Test Technique	Items, Materials or Product Tested	Key Equipment or Technology
Compression force, Insertion	CUP-T1001	Plastic Fasteners, Screws, Adhesives, 3-D objects within equipment operational range	Tensile Testing Machine Up to 1000 lbf
Tensile Force, Extraction	CUP-T1002	Plastic Fasteners, Screws, Adhesives, 3-D objects within equipment operational range	Tensile Testing Machine Up to 1000 lbf
Tensile, Pull – Breaking Force	CUP-T1004	Plastic Fasteners, Screws, Adhesives, 3-D objects within equipment operational range	Tensile Testing Machine Up to 1000 lbf
Shear Force	CUP-T1003	Plastic Fasteners, Screws, Adhesives, 3-D objects within equipment operational range	Tensile Testing Machine Up to 1000 lbf
Strip Torque, Drive Torque, Torsional Strength	CUP-F.I.P 1000	Screws, Grommets, Bolts	Torque Wrench Up to 300 in·lb
Ductility Testing	CUP-F.I.P 1000	Screws & Bolts	Visual
Drive Test	CUP-F.I.P 1000	Screws & Bolts	Visual
Pitches UNC (4 to 84)	ASME B1.1.3M:2005	Fasteners	Visual comparison with Screw Pitch Gage
Part Weights	RFM-0025	Plastic Fasteners, Screws, Small parts, 3-D objects	Balance Up to 310 g

DIMENSIONAL MEASUREMENT

1 Dimensional

Parameter	Range	Expanded Uncertainty of Measurement (+/-) ²	Reference Standard, Method, and/or Equipment
Dimensional Measurement 1D	Up to 60 in	$(1\ 500 + 13.9L)\ \mu in$	Caliper, Length Gage
	Up to 12 in	1 500 μin	Height Gage
	Up to 2 in	(170 + 7.9 <i>L</i>) μin	Micrometer
	Up to 6 in	1 200 μin	Depth Micrometer
	Up to 2 in	(220 + 4.2 <i>L</i>) μin	Drop Indicator
	Up to 0.003 in	430 µin	Test Indicator
	(0.011 to 1) in	630 µin	Pin Gages
	Up to 180°	1.3°	Protractors
	(0.01 to 2) in	3 700 μin	Radius Gages
	Up to 0.5 in	2 900 μin	Handheld Microscope (7x)
	Up to 1 in	120 μin	Laser Micrometer

2 Dimensional

Parameter	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Dimensional Measurement	Up to 12 in x 5 in (Diagonal: up to 13 in) Angle: up to 360°	320 μin 0.24°	Optical Comparator (10x)
2D	Up to 6 in x 3 in Angle: up to 360°	400 μin 0.18°	Profile Projector (5x, 10x, 20x)

3 Dimensional

Parameter	Range	Expanded Uncertainty of Measurement (+/-) ²	Reference Standard, Method, and/or Equipment
	$\begin{array}{c} \underline{\text{Vision}} \\ \text{X \& Y} = \text{Up to } 12 \text{ in} \\ \text{Z} = \text{Up to } 9.8 \text{ in} \end{array}$	(220 + 2.8 <i>L</i>) μin	Video Measuring System – Vertex 312, Vertex 420, Sol 161
Dimensional Measurement 3D	$\frac{\text{Touch Trigger Probe}}{\text{X \& Y} = \text{Up to } 12 \text{ in}}$ $\text{Z} = \text{Up to } 9.8 \text{ in}$	$(230 + 3.0L) \mu in$	Vertex 312 with Renishaw Touch Probe
	X = Up to 27 in Y = Up to 39 in Z = Up to 23 in	(120 + 9.1 <i>L</i>) μin	Coordinate Measuring Machine – Zeiss Contura G2 Scanning

CALIBRATION

Length – Dimensional Metrology

Version 011 Issued: September 18, 2024

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-) ²	Reference Standard, Method, and/or Equipment
Calipers, Length Gages	Up to 60 in	(580 + 11 <i>L</i>) μin	Caliper Master, Gage Blocks Cal-001
Height Gages	Up to 20 in	(590 + 0.37 <i>L</i>) μin	Gage Blocks Cal-001
Micrometers (ID, OD, Depth)	Up to 12 in	(80 + 6.7 <i>L</i>) μin	Gage Blocks Cal-002, Cal-017, Cal-020
Drop or Dial Indicators	(0.000 1 to 6) in	(74 + 9.4 <i>L</i>) μin	Gage Blocks Cal-003
Test Indicators	(0.000 1 to 0.1) in	180 µin	Gage Blocks Cal-004
Radius Gages	Up to 10 in	(210 + 1.5 <i>L</i>) μin	Video Measurement System Cal-013
Protractors	Up to 180°	0.78°	Angle Blocks Cal-015
Pin/Plug Gages	(0.01 to 1) in	120 µin	Laser Micrometer Cal-018

ANA National Accreditation Board

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-) ²	Reference Standard, Method, and/or Equipment
Thickness Gages & Other Fixed Gages	Up to 2 in	(220 + 4.2 <i>L</i>) μin	Digital Indicator Cal-014, Cal-019
	Up to 12 in	$(210 + 1.5L) \mu in$	Video Measurement System Cal-014, Cal-019
Checking Fixtures/Gages	Up to 30 in Angle: up to 360°	(120 + 4.9 <i>L</i>) μin 0.065°	Coordinate Measuring Machine – Zeiss Contura G2 Cal-014
Steel Rules	Up to 36 in	4 300 μin	Microscope Handheld / Master Steel Rule Cal-016

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (*k*=2), corresponding to a confidence level of approximately 95%.

Notes:

- 1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope.
- 2. L =Length in inches.
- 3. This scope is formatted as part of a single document including Certificate of Accreditation No. ACT-1189.

Jason Stine, Vice President

Version 011 Issued: September 18, 2024

